If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+2=41
We move all terms to the left:
3k^2+2-(41)=0
We add all the numbers together, and all the variables
3k^2-39=0
a = 3; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·3·(-39)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{13}}{2*3}=\frac{0-6\sqrt{13}}{6} =-\frac{6\sqrt{13}}{6} =-\sqrt{13} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{13}}{2*3}=\frac{0+6\sqrt{13}}{6} =\frac{6\sqrt{13}}{6} =\sqrt{13} $
| x6=24. | | b/3-6=30 | | 4y-3/7=3 | | -9+6z=6-9z | | 27y/28-7=1-4y/7 | | 5a-80=70 | | 6-9p=-5p-9-9 | | 3k+2=41 | | 2x^{2}+6x-20=0 | | -h+6=-2h+10 | | 29.2/8=x/4 | | 3x+26=5x-20 | | p-6/14=-1 | | -17=19n=-150 | | 17=-3(23-m)+2(m-2) | | -2+m/9=-3 | | 6i-3=-18+i | | p+7/3=7 | | -8x-18=-274 | | 47=31-4(x-2) | | p+6/3=3 | | 16x+19=595 | | x-5/6=-1/6 | | n=9/10=-4 | | p–5=-2 | | 22=2h+10 | | -4.5+3=2-8.5x | | B.2/3b-1/3b=4/3 | | 39=26-b | | 7l-4=2l+16 | | -66=-3(m+5) | | 15=-5t^2+20t+1 |